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It is proved that, under some conditions, weaker than those of the Marcinkiewicz
multiplier theorem, the multiplier operator T+ (�k ckeikt)=�k +kck eikt satisfies on
the Besov space B_, q
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_1, q1) and _0>_>_1>0. � 1999
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1. INTRODUCTION

The main idea underlying this paper is that the description of
approximation spaces and the calculation of almost optimal approximation
elements, in combination with real interpolation, are very useful in the
so-called commutator theorems.
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Let X� =(X0 , X1) be a Banach couple and, for any x # 7(X� )=X0+X1

and t>0, let us denote

K(t, x)=K(t, x; X� )= inf
x=x0+x1

[&x0&X0
+t &x1&X1

],

the Peetre's K�functional. If 0<%<1 and 1�q��, we denote (X� )%, q the
corresponding interpolation space defined by the real K-method, endowed
with the norm

&x&%, q=&t&%K(t, x)&Lq (dt�t) ,

and L(X� ; Y� ) the vector space of all linear operators T : 7(X� ) � 7(Y� ) such
that T(Xj)/Yj ( j=0, 1) and &T&=max(&T&X0 , Y0

, &T&X1, Y1
)<�.

If

Sf (t)=|
t

0
f (s)

ds
s

+t |
�

t
f (s)

ds
s2=|

�

0
f (s) min(1, t�s)

ds
s

is the Caldero� n operator, we set

_(X� )=[x # 7(X� ); S(K( } , x))(1)<�]. (1)

Observe that _(X� ) is a linear subspace of 7(X� ) which contains all the
spaces (X� )%, q .

A pair of operators 0X� : _(X� ) � 7(X� ), 0Y� : _(Y� ) � 7(Y� ) will be said to
be K-commuting if there exists a constant C>0 such that

K(t, [T, 0](x))�C &T& S(K( } , x))(t). (2)

for any x # _(X� ) and T # L(X� ; Y� ). Here [T, 0]=T0X� &0Y� T.
In this case, 0 is well defined on the spaces (X� )%, q and for all

T # L(X� ; Y� ) we obtain from (2) the commutator theorem

&[T, 0](x)&%, q�c &T& &x&%, q , (3)

with c>0 independent of T # L(X� ; Y� ) and x # (X� )%, q . See the proof of
Theorem (4.3) in [MS].

We refer to [BK], [BL], and [BS] for general results concerning inter-
polation theory.

In the main result below, Banach couples are pairs of Besov spaces. For
simplicity, we only consider Lp -approximation by trigonometric polyno-
mials, and by B_, q

p =B_, q(Lp) we denote the Besov space of 2?-periodic
complex-valued functions (see [BB] and [DL]). Its norm satisfies

& f &B p
_, q &\ :

�

n=0

[2n_e2n( f )]q+
1�q

, (4)
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where e2n( f )=d( f, A2n) is the Lp -distance from f to the space A2n of all
trigonometric polynomials

:
|k|<2n&1

cke ikx

of degree less than 2n&1 (and A1=[0]).
As usual, F&G means that F�C1G and G�C2 F for some constants C1

and C2 .

Let +=[+k]+�
k=&� be a sequence of complex numbers. We shall consider

the multiplier operator defined on the trigonometric polynomials by

T+\:
k

cke ikx+=:
k

+kckeikx.

Our main result is the following theorem whose proof will be given in
Section 4. If n # N, we denote 2n=[k # Z; 2n&1�k<2n], 2&n=&2n , and
20=[0].

Theorem 1. Suppose that +=[+k]+�
k=&� is a sequence of complex

numbers such that

sup
k

|+k&+&k |=c1<� (+&0=0) (5)

and

sup
n # Z \ :

k # 2n

|+k+1&+k |+=c2<�. (6)

Then the operator T+ is K-commuting (see (2)) for the couples (B_0 , q0
p , B_1 , q1

p )
(1<p<�, _0>_1 , q0 , q1�1).

The constant c in (2) can be estimated by c�# max(c1 , c2), with # a con-
stant which depends only on the parameters _ and q.

Thus, for _0>_1>0,

&[T, T+]&B p
_, q, B p

_, q�c&T&,

where &T&=max(&T&Bp
_0 , q0, Bp

_0 , q0 , &T&Bp
_1, q1, Bp

_1, q1), _=(1&%) _0+%_1 for
some % # (0, 1), and q0 , q1�1. Under these conditions it is known (cf.
[BL]) that

(B_0 , q0
p , B_0 , q0

p )%, q=B_, q
p .
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Remark 1. Simple examples, such as the operator Tf (x)= f (&x),
show that condition (5) is necessary. Moreover, if the sequence [+k] is
diadic, in the sense that it is constant in every interval 2n , condition (6) has
the form

sup
n

[max( |+2n+1&+2n |, |+&2n+1&+&2n | )]<�

and it is also necessary (e.g., consider the operator Tf (x)= f (2x)).

Remark 2. In our Theorem 1, which is independent of the Marcinkiewicz
theorem, the conditions on + are much weaker than those of that theorem.
In our case sequences as +k=log |k| (k=\1, \2, ...) are allowed.

Recall (cf. [EG]) that the strong form of the Marcinkiewicz theorem
states that, under the conditions (6) and

sup
k

|+k |<�,

T+ is an Lp-multiplier (1<p<�).

This paper is organized as follows:
In Section 2 we prove a commutator theorem (3) which applies to cer-

tain operators of the type

0(x)= :
j<0

*jx0 (tj)+ :
j�0

*jx1 (tj),

associated to decompositions x=x0(t)+x1(t) which are almost optimal for
the K-functional, in the sense that K(t, x)&&x0(t) &X0

+t&x1(t)&X1
. This

result can be considered special instance of the method given in [CCS],
and extends the results of [JRW], and the real version of the previous
construction in [RW] for the complex method; it is also related to [MS;
Theorem (3.7)].

Section 3 deals with approximation spaces. A ``Holmstedt-type formula''
for the K-functional provides an almost optimal decomposition for the
K-functional of these spaces.

In Section 4 the previous results are applied to the commutators for mul-
tipliers on Besov spaces by representing them as approximation spaces.

2. THE COMMUTATOR THEOREM

For a given Banach couple X� , let H(X� ) be the Banach space of all
measurable functions

(x0 , x1): R+ � X0_X1
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such that x0 (t)+x1 (t)=8(x0 , x1) # 7(X� ), constant, and

&(x0 , x1)&H=S(:(x0 , x1))(1)<�,

where :(x0 , x1)(t)=&x0 (t)&0+t&x1 (t)&1 .
The operator 8X� =8 : H(X� ) � 7(X� ), such that 8(x0 , x1)=x0 (t)+

x1(t), is bounded, since

&8(x0 , x1)&7=&x0 (t)+x1 (t)&7�2 |
2

1
:(x0 , x1)(s)

ds
s

�2 &(x0 , x1)&H .

If Y� is a second Banach couple and T # L(X� ; Y� ), we define H(T )
(x0 , x1)=(Tx0 , Tx1) and we obtain a linear operator H(T ) : H(X� ) � H(Y� )
such that &H(T )&�&T&X� ; Y� and T b 8X� =8Y� b H(T ).

Observe that _(X� ) is the image space, 8(H(X� )), endowed with the
quotient norm

&x&8= inf
x=x0 (t)+x1(t)

&(x0 , x1)&H=S(K( } , x))(1),

since obviously S(K( } , x))(1)�&x&8 and, on the other hand, if x # _(X� ),
we can consider x=x0(t)+x1(t) such that :(x0 , x1)(t)�(1+=) K(t, x) and
then (x0 , x1) # H(X� ) with &x&8�S(:(x0 , x1))(1)�(1+=) S(K( } , x))(1).

For every Banach couple X� , let 9X� =9 : H(X� ) � 7(X� ) be a second
operator such that T b 9X� =9Y� b H(T ).

Let c>1, a fixed constant. If for every x # _(X� ) we choose an almost
optimal decomposition for the K-functional, hx=(x0 , x1), in the sense that

x0 (t)+x1 (t)=x and :(x0 , x1)(t)�cK(t, x),

then &hx &H�c &x&8 .
The associated operator 0X� =0 will be the operator, generally non-

linear, defined by

0(x)=9(hx).

The following lemma, which is an abstract version of the commutator
theorem, shows where cancellation takes place.

Lemma 1. Assume that 9 satisfies the following condition: For every
(x0 , x1) # H(X� ) such that x0+x1=0, there exists a measurable function

( y0 , y1): R+ � X0_X1
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with the properties

y0(t)+ y1(t)=9(x0 , x1) and :( y0 , y1)(t)�cS(:(x0 , x1))(t) for all t>0,

where c is a constant which does not depend on (x0 , x1).
Then 0 is K-commuting; i.e.,

K(t, [T, 0](x))�C &T& S(K( } , x))(t).

Proof. Let x # _(X� ). Then Tx # H(Y� ), and for the almost optimal
decompositions hx # H(X� ) and hTx # H(Y� ) we have :(hx)(t)�cK(t, x) and
:(hTx)(t)�cK(t, Tx)�c &T& K(t, x).

Then

[T, 0] x=T9hx&9hTx=9Y� (H(T ) hx&hTx)

with H(T ) hx&hTx # H(Y� ) and 8(H(T ) hx&hTx)=0. Hence, there exists
( y0(t), y1(t)) such that y0+ y1=9(H(T ) hx&hTx) and :( y0 , y1)(t)�
cS(:(H(T ) hx&hTx))(t). Thus

K(t, [T, 0] x)�:( y0 , y1)(t)�cS(:(H(T ) hx&hTx))(t).

To estimate the right-hand side, we observe that :(H(T ) hx&hTx)�
2c &T& K(t, x), and S is positive. K

We associate to every * # L�(R+) the operator 9X� : H(X� ) � 7(X� ) such
that

9X� (x0 , x1)=|
1

0
*(t) x0 (t)

dt
t

+|
�

1
*(t) x1 (t)

dt
t

,

and, for a given almost optimal decomposition, the corresponding operator
0X� =0.

The operator 9X� is bounded, since

" |
1

0
*(t) x0 (t)

dt
t "0

�&*&� |
1

0
&x0(t)&0

dt
t

�&*&� |
1

0
:(x0 , x1)(t)

dt
t

,

and similarly

" |
�

1
*(t) x1(t)

dt
t "1

�&*&� |
�

1
:(x0 , x1)(t)

dt
t2 ,

thus, &9X� (x0 , x1)&7�&*&� &(x0 , x1)&H .
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Theorem 2. For every * # L�(R+), the associated operator 0 is K-com-
muting for all Banach couples X� .

Proof. Let (x0 , x1) # H(X� ) as in Lemma 1. Then, since x1 (t)=
&x0 (t) # X0 & X1 ,

9(x0 , x1)=|
1

0
*(t) x0 (t)

dt
t

&|
�

1
*(t) x0 (t)

dt
t

,

and, if 9(x0 , x1)=y0 (t)+y1 (t) is an almost optimal decomposition for the
K-functional, it follows that

:( y0 , y1)(t)�cK(t, 9(x0 , x1))�c |
�

0
|*(s)| J(s, x0 (s)) min\1,

t
s+

ds
s

�c &*&� S(:(x0 , x1))(t). K

Let us now denote Dn=[2n&1, 2n) (n # Z), the dyadic intervals of
(0, �).

Theorem 3. Let [tj]j # Z /(0, �) be an increasing sequence such that
tj�1 if j<0 and tj�1 if j�0, tj A � as j A +� and t j a 0 as j a &�, and
[*j] j # Z any sequence of complex numbers such that

M*=sup
n

:
tj # Dn

|* j |<�. (7)

For a given Banach couple, X� , and for every tj let x=x0 (tj)+x1 (tj) be a
decomposition such that

&x0 (t j)&0+tj &x1 (t j)&1�cK(t j , x) (x # _(X� )),

where c>1 is a constant.
Then

0(x)= :
j<0

*j x0(tj)+ :
j�0

*jx1 (tj)

defines a K-commuting operator on X� .

Proof. If *Dn
=�tj # Dn

*j , the operator

0*(x)= :
n<0

(*Dn
&1) x0(2n)+ :

n�0

(*Dn
&1) x1(2n),
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with x=x0 (2n)+x1 (2n) and &x0 (2n)&0+2n &x1 (2n)&1�cK(2n, x), is K-com-
muting, since

0*(x)=
1

log 2 \ :
n<0

|
Dn

(*Dn
&1) x0 (2n)

dt
t

+ :
n�0

|
Dn

(*Dn
&1) x1(2n)

dt
t +

=
1

log 2 \ |
1

0
*(t) x0 (t)

dt
t

+|
�

1
*(t) x1 (t)

dt
t +

for *(t)=*Dn
&1 and xi (t)=xi (2n) if t # Dn , and Theorem 2 applies.

We only need to prove that the operator

(0&0*) x= :
n<0 _ :

tj # Dn

*j x0 (tj)&(*Dn
&1) x0 (2n)&

+ :
n�0

_ :
tj # Dn

*jx1 (t j)&(*Dn
&1) x1 (2n)&

is K-commuting.
For every Dn we have the decomposition

:
tj # Dn

* jx0 (t j)&(*Dn
&1) x0 (2n)+ :

tj # Dn

*jx1 (t j)&(*Dn
&1) x1 (2n)=x

and

" :
tj # Dn

*j x0 (tj)&(*Dn
&1) x0 (2n)"0

�M* max
tj # Dn

&x0 (t j)&0+(M*+1)&x0 (2n)&0

�cM*K(2n+1, x)+c(M*+1) K(2n, x)

�c(3M*+1) K(2n, x).

Similarly, &�tj # Dn
* jx1 (tj)&(*Dn

&1) x1 (2n)&1�c(2M*+1) K(2n, x)�2n.
It follows that the above decomposition is almost optimal and, in the

same way as for 0*, the operator 0&0* is K-commuting. K

We associate to [*j] the new sequence [+ j], with

:
k� j<0

*j if k<0,

+k={ :
0�j<k

*j if k>0,

*0 if k=0.
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Thus |*k |=|+k+1&+k | if k{0, and the condition (7) is equivalent to

sup
n # Z

:
tk # Dn

|+k+1&+k |<�. (8)

For every x # _(X� ) we have limt � 0 K(x, t)=limt � � K(x, t)�t=0 and, if
we denote uk=x0(tk)&x0(tk&1), in 7(X� ) we have x0 (tj)=�k� j uk and
x1 (t j)=x&x0 (tj)=�k> j uk , and then

0x= :
j<0

*j\ :
k� j

uk ++ :
j�0

* j\ :
k> j

uk+
= :

k<0
\ :

k� j<0

*j + uk+ :
k�0

\ :
0� j<k

*j+ uk .

Hence we can describe the 0-operator as

0x= :
k<0

+k (x0 (tk)&x0 (tk&1))+ :
k�0

+k (x0 (tk)&x0 (tk&1))

and it is K-commuting if condition (8) is satisfied.

Corollary 1. Let [tj] be a sequence as in Theorem 3 and [+ j] be a
sequence of complex numbers such that

C*=sup
n # Z

:
tk # Dn

|+k+1&+k |<�. (9)

Then

0(x)= :
k # Z

+k (x0 (tk+1)&x0 (tk))

defines a K-commuting operator for any Banach couple.

Remark 3. It is easily seen (cf. [EG]) that, for any $>1, condition (9)
is equivalent to

C$*=sup
n # Z

:
tk # [$n, $n+1)

|+k+1&+k |<�. (10)

3. ALMOST OPTIMAL DECOMPOSITION FOR
APPROXIMATION SPACES

Let V be a Hausdorff topological linear space and X be a Banach sub-
space of V, with continuous embedding XYV.
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Let us also consider a fixed approximation family At (t>0), which is a
family of nonempty subsets of V with the following properties:

(a) As /At if s<t,

(b) &At=At , and

(c) As+At /As+t .

It is clear that 0 # �t>0 At and that A=�t>0 At is an abelian group that
will be endowed with the (semi-)norm

&x&A=inf[t>0; x # At].

Then, as in [PS], we can define the approximation spaces Ep, q , similar to
the Lorentz spaces Lp, q , of all elements f # A+X such that

& f &Ep, q
=\ |

�

0
[t1�pE( f, t)]q dt

t +
1�q

<�,

with E( f, t)=infa # At
& f&a&X . By ft we denote an element in At such that

& f& ft&X�cE( f, t) (11)

with c>1 independent of t>0 and f.

A typical example (see [PS] or [Ni]) appears for V=L0 , the space of
all measurable functions on Rn, X=L� and At=[ f # L0 ; & f &0=|supp f |�t].
In this case

E( f, t)= f *(t),

the nonincreasing rearrangement of f, Ep, q=Lp, q and we have the
Holmstedt formula for couples of Lorentz spaces,

K(t1�p0&1�p1, f; Lp0 , q0
, Lp1, q1

)

&\|
t

0
(s1�p0 f *(s))q0

ds
s +

1�q0

+t$ \ |
�

t
(s1�p1 f *(s))q1

ds
s +

1�q1

,

to estimate the K-functional.
A similar result holds for couples of approximation spaces and gives an

estimate for the K-functional:

Theorem 4. If (Ep0 , q0
, Ep1, q1

) is a couple of approximation spaces and
p0<p1 , then
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(a) K(t1�p0&1�p1, f; Ep0 , q0
, Ep1 , q1

)&& ft &Ep0 , q0
+t1�p0&1�p1& f& ft&Ep1, q1

,
and

(b) K(t1�p, f; Ep, q , X)&& ft&Ep, q
+t1�p & f& ft &X .

Proof. (a) Let $=1�p0&1�p1 . It is known (cf. [Ni]) that

K(t$, f; Ep0 , q0
, Ep1, q1

)&\|
t

0
(s1�p0E( f, s))q0

ds
s +

1�q0

+t$ \ |
�

t
(s1�p1E( f, s))q1

ds
s +

1�q1

. (12)

If ft is as in (11), we have E( ft , s)=0 when s>t and E( ft , s)�2cE( f, s)
when s�t, since & ft& fs &�cE( f, t)+cE( f, s)�2cE( f, s). Hence

& ft &Ep0 , q0
=\|

t

0 \s1�p0E( ft , s))q0
ds
s +

1�q0

�2c \ |
t

0 \s1�p0E( f, s)+
q0 ds

s +
1�q0

. (13)

On the other hand,

t$ & f& ft&Ep1 , q1
=t$\ |

�

0
( s1�p1E( f &ft , s))q1

ds
s +

1�q1

=I1+I2

with

I1=t$ \ |
2t

0
(s1�p1E( f &ft , s))q1

ds
s +

1�q1

and

I2=t$\ |
�

2t
(s1�p1E( f &ft , s))q1

ds
s +

1�q1

.

From E( f &ft , s)�& f& ft&X we obtain the estimate

I1�( p1 �q1)1�q1 t$ & f& ft&X 21�p1 t1�p1�c( p1 �q1)1�q1 21�p1t1�p0 E( f, t)

�c( p1 �q1)1�q1 21�p1 \ |
t

0
(s1�p0E( f, s))q0

ds
s +

1�q0
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and, since in E( f &ft , s)�E( f, s�2)+E( ft , s�2), E( ft , s�2)=0 when s�2t,

I2�t$ \ |
�

2t
(s1�p1E( f, s�2))q1

ds
s +

1�q1

=t$ \ |
�

t
((2s)1�p1E( f, s))q1

ds
s +

1�q1

.

By combining these estimates, (13) and (12) it follows that

& ft &Ep0 , q0
+t$& f& ft &Ep1 , q1

�CK(t$, f; Ep0 , q0
, Ep1, q1

).

Obviously, K(t$, f; Ep0, q0
, Ep1 , q1

)�& ft&Ep0 , q0
+t$& f& ft&Ep1, q1

.
The proof of (b) is the same, starting now from

K(t1�p, f; Ep, q , X)&\|
t

0
(s1�pE( f, s))q ds

s +
1�q

instead of (12). K

4. PROOF OF THEOREM 1

Proof. Let us denote by An, m (n<m in Z) the linear space of trigono-
metric polynomials with basis eikx (n<k<m), and by Pn, m the projection

Pn, m\ :
+�

k=&�

ckeikx+= :
n<k<m

ckeikx

from Lp onto An, m . If p # (1, �), we shall use the uniform boundedness on
Lp of these projections,

sup
n<m

&Pn, m&Lp , Lp
<�, (14)

which follows from the boundedness properties of the Hilbert transform.
To show that the Besov space B_, q

p is an approximation space, E1�_, q , we
shall construct an approximation family of linear spaces At (t>0).

For t=2n, n # N, At is the space, defined in Section 1, of all tri-
gonometric polynomials of the type

:
|k|<2n&1

ckeikx,

with A1=[0].
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To define AN when N # N and 2n<N<2n+1, we take as generators the
basis of A2n plus the first N&2n terms of the sequence

e&2n&1xi, e&(2n&1+1) xi, ..., e&(2n&1) xi, e2n&1xi, e(2n&1+1) xi, ..., e(2n&1) xi.

For 0<t � Z we define At=A[t]+1 .
The dimension of AN is N&1, it is of type An, m and the projections

Pt=Pn, m : Lp � At

are uniformly bounded.
Now we can consider the space Ep, q with the norm

& f &Ep, q
=\|

�

0
[t1�pE( f, t)]q dt

t +
1�q

.

We have

e2n+1( f )�E( f, t)�e2n( f ) (2n�t�2n+1),

and, since At=[0] for t<1,

& f &Ep, q
&\ :

�

n=0

[2n�pe2n( f )]q+
1�q

.

Thus, by (4),

& f &E1�_, q
&& f &B p

_, q

and our couple (B_0 , q0
p , B_1, q1

p ) is just (E1�_0 , q0
, E1�_1, q1

).
Moreover, from the uniform boundedness of the projections Pt it follows

that

& f&Pt f &Lp
�cE( f, t)

with c�1 independent of t>0 and f. By Theorem 4, this means that
(Pt f, f&Pt f ) is an almost optimal decomposition of f for the couple
(B _0 , q0

p , B _1 , q1
p ) and that for all t>0 we have

K(t_0&_1, f; B _0 , q0
p , B_1, q1

p )&&Pt f &Bp
_0 , q0+t_0&_1& f&Pt f &Bp

_1 , q1 .

We shall consider the sequence tn=n_0&_1 if n=1, 2, ... (and any tn a 0 as
n a &�), and the operator

0: _(B_0 , q0
p , B_1 , q1

p ) � B_0 , q0
p +B_1, q1

p
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defined by

0( f )= :
�

k=1

+k*(Pk+1 f &Pk f ),

where [+k*]�
k=1 is the rearrangement of [+ j]+�

j=&� defined as follows. If
einkx is the element added to the basis of Ak to obtain Ak+1 , then +k*=+nk

(k�1). Set +k*=0 if k�0.
For f =�k ck eikx, since

[(Pk+1&Pk) f ](x)=cnk
einkx,

we have that T+( f )=0( f ).
The sequence [+k*]�

k=1 satisfies condition (9) of the commutator theorem
or the equivalent property (10). This follows from (5) and (6), since

|+&(2n+1&1)&+2n |�|+&(2n+1&1)&+&2n |+|+&2n&+2n |�c1+c2

and then, if $=2_0&_1,

:
tk # [$n, $n+1)

|+*k&1&+k* |

& |+2n+1&1&+2n+1&2 |+|+2n+1&2&+2n+1&3 |

+ } } } +|+2n+1&+2n |

+|+2n&+&(2n+1&1) |

+|+&(2n+1&2)&+&(2n+1&3) |+ } } } +|+&(2n+1)&+&2n |

�C.

An application of Corollary 1 ends the proof.

REFERENCES

[BB] P. L. Butzer and H. Berens, ``Semi-Groups of Operators and Approximation,''
Springer-Verlag, New York, 1967.

[BK] Yu. A. Brudnyi@� and N. Ya. Krugljak, ``Interpolation Functors and Interpolation
Spaces,'' North Holland, Amsterdam�New York�Oxford�Tokyo, 1991.

[BL] J. Bergh and J. Lo� fstro� m, ``Interpolation Spaces,'' Springer-Verlag, New York, 1976.
[BS] C. Bennett and B. Sharpley, ``Interpolation of Operators,'' Academic Press, New

York, 1988.
[CCS] M. J. Carro, J. Cerda� , and J. Soria, Commutators and interpolation methods, Ark.

Mat. 33 (1995), 199�216.

264 CERDA� , MARTI� N, AND KRUGLJAK



[DL] R. A. DeVore and G. G. Lorentz, ``Constructive Approximation,'' Springer-Verlag,
Berlin�Heidelberg�New York, 1993.

[EG] R. E. Edwards and G. I. Gaudry, ``Littlewood�Paley and Multiplier Theory,''
Springer-Verlag, Berlin�Heidelberg�New York, 1977.

[MS] M. Milman and T. Schonbek, Second order estimates in interpolation theory and
applications, Proc. Amer. Math. Soc. 110 (1990), 961�969.

[JRW] B. Jawerth, R. Rochberg, and G. Weiss, Commutators and other second order
estimates in real interpolation theory, Ark. Mat. 24 (1986), 191�219.

[Ni] P. Nilsson, Reiteration theorems for real interpolation and approximation spaces,
Ann. Math. Pura Appl. 132 (1982), 291�330.

[PS] J. Peetre and G. Sparr, Interpolation of normed abelian groups, Ann. Math. Pura
Appl. 92 (1972), 217�262.

[RW] R. Rochberg and G. Weiss, Derivatives of analytic families of Banach spaces, Ann. of
Math. 118 (1983), 315�347.

265COMMUTATORS AND MULTIPLIERS


	1. INTRODUCTION 
	2. THE COMMUTATOR THEOREM 
	3. ALMOST OPTIMAL DECOMPOSITION FOR APPROXIMATION SPACES 
	4. PROOF OF THEOREM 1 
	REFERENCES 

